EX-96085 # (Human Machine Interface) User Manual "The Human Machine Interface is where people and technology meet." Release Date Revision Sep 2006 V0.1 ®2005 TOPSCCC Technology, Inc. All Rights Reserved. Published in **Taiwan** **TOPSCCC Technology, Inc.** 5F, NO. 12, ALLEY 345, Yang-Guang ST., Nei-Hu, Taipei, Taiiwan R.O.C Tel:886-2-27999080 Tel:886-2-26585042, 26575516 E-mail: support@topsccc.com URL: www.topsccc.com This equipment generates, uses and can radiate radio frequency energy and if not installed and used in accordance with the instructions manual, it may cause interference to radio communications. It has been tested and found to comply with the limits for a Class A computing device pursuant to FCC Rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment. Operation of this equipment in a residential area is likely to cause interference in which case the user at his own expense will be required to take whatever measures may be required to correct the interference. Electric Shock Hazard – Do not operate the workstation with its back cover removed. There are dangerous high voltages inside. ## **Disclaimer** This information in this document is subject to change without notice. In no event shall TOPSCCC Technology Inc. be liable for damages of any kind, whether incidental or consequential, arising from either the use or misuse of information in this document or in any related materials. # Table of Contents_____ | Varning! | 2
2 | |---------------------------------------|-------------------------| | Chapter 1 | | | | 6 | | 1.2 Specifications | 6 | | | 8 | | <u> </u> | 9 | | | 9
12 | | 1.6 Brief Description of the EX-96085 | 12 | | Chapter 2 | System Installation | | 2.1 Installation of the EX-96085 | 13 | | Chapter 3 | Mainboard Configuration | | | REFERENCE TABLE16 | | | 17 | | | 18 | | | N20 | | | N20 | | | N20 | | | N20 | | , | DN24 | | | ION25 | | | 25
ECTION26 | | | 26 | | | 27 | | | ON27 | | _ | 28 | | | 28 | | 3.17 VGA CONNECTOR | 31 | | 3.18 LVDS CONNECTOR | 32 | | 3.19 POWER CONNECTOR | 33 | | 3.20 HARD DISK DRIVE CONNECTOR | ₹34 | | | 35 | | 3.22 LAN CONNECTOR | 36 | | 3.23 LAN LED CONNECTOR | 36 | |---|-------------| | 3.24 KEYBOARD CONNECTOR | 37 | | 3.25 PS/2 MOUSE CONNECTOR | 37 | | 3.26 HDD LED CONNECTOR | 38 | | 3.27 POWER BUTTON | | | 3.28 POWER LED CONNECTOR | 38 | | 3.29 UNIVERSAL SERIAL BUS CONNECTOR | 39 | | 3.30 MEMORY INSTALLATION | 41 | | 3.31 INVERTER CONNECTOR | 41 | | 3.32 POWER MODULE | 42 | | 3.33 COMPACT FLASH CONNECTOR | 43 | | 3.34 PCI-104 CONNECTOR | 44 | | 3.35 CPU FAN CONNECTOR | 45 | | 3.36 SYSTEM FAN CONNECTOR | | | 3.37 SERIAL ATA CONNECTOR | | | 3.38 RESET & SPEAKER CONNECTOR | 47 | | Chapter 4 Software | are Utility | | 4.1 Introduction to Software Utilities | 48 | | 4.2 VGA DRIVER UTILITY | | | 4.3 FLASH BIOS UPDATE | | | 4.4 LAN DRIVER UTILITY | | | 4.5 SOUND DRIVER UTILITY | | | 4.6 INTEL® C HIPSET SOFTWARE INSTALLATION UTILITY | | | 4.7 USB2.0 SOFTWARE INSTALLATION UTILITY | 53 | | 4.8. SERIAL ATA DRIVER UTILITY | 54 | | 4.9 WATCHDOG TIMER CONFIGURATION | 55 | | Chapter 5 AWARD BIO | OS Setup | | 5.1 Introduction to Award Bios Setup | | | 5.2 ENTERING SETUP | | | 5.3 THE STANDARD CMOS FEATURES | | | 5.4 THE ADVANCED BIOS FEATURES | | | 5.5 ADVANCED CHIPSET FEATURES | | | 5.6 INTEGRATED PERIPHERALS | | | 5.7 POWER MANAGEMENT SETUP | | | 5.8 PNP/PCI CONFIGURATION | | | 5.9 PC HEALTH STATUS | | | 5.10 FREQUENCY CONTROL | | | 5.11. LOAD FAIL-SAFE DEFAULTS | | | 5.12. LOAD OPTIMIZED DEFAULTS | | | | | | 5.13. PASSWORD SETTING
5.14 SAVE & EXIT SETUP
5.15 EXIT WITHOUT SAVING | | 75 | |--|---------------------------|-----------| | Chapter 6 | Touch Driver Installation | <u>on</u> | | 6.1 Introduction to the TB-31 Touch Scree | | | | 6.2 Configuring the PenMount Windows 2 | | | | 6.3 Uninstall the PenMount Windows 2000/XP Driver | | 88 | | 6.4 Software Functions | | 89 | | Appendix: Mainboard Technic | cal Summary | 91 | # 1.1 Features - High performance Celeron M/Pentium M CPU support - 8" SVGA TFT LCD with high luminance - Low power consumption with fanless cooling system - NEMA 4/IP 65 compliant front panel - Panel mount and VESA 75 mounting support - Resistive touch screen - DC 11~28V wide range power input - Support Windows 2000/XP, XP embedded and CE.NET # 1.2 Specifications # **System** # CPU: Celeron M 600MHz or 1.0GHz without L2 cache ## **System Memory:** 256MB up to 1GB DDRAM ## Slot: One 40GB HDD, One compact flash drive (optional) ## **Power Supply:** Input voltage range of 10.8~28V #### Touch Screen: Touch screen with 4-wire, analog resistive; resolution of 800 x 600, light transmission of above 80%; and life of 1 million activations (minimum) ## I/O Connectors: Serial ports: 2 (COM1: RS-232, COM2: RS232/422/485, COM3: reserved, COM4: for touch screen) Ethernet port (10/100 base-T) x 1; USB port) x 2, Parallel port x 1; Stereo audio mic-in, line-in and line-out x 1; PS/2 keyboard x 1; and PS/2 mouse x 1 #### EMC: FCC, CE Class A certified # **Display** # Resolution, color, and luminance: 8 inches TFT LCD with resolution of 800x600, 262k colors, 400 cd/m² # **Mechanical** ## **Construction:** Metal allow housing ## Color: Black front panel ## **Dimensions:** 231(W) x 81(D) x 176(H)mm # Weight: 1.4 kg # **Environment** # **Operating temperature:** 0~50 ° C # Storage temperature: 0~70 ° C # **Relative humidity:** 10~95% @ 40 ° C non-condensing ## Vibration: 5~17Hz, 0.1" double amplitude displacement 17~640Hz, 1.5G acceleration peak to peak ## Shock: 10G acceleration peak to peak (11 millimeters) # 1.3 Dimensions Figure 1.1: Dimensions of the EX-96085 # 1.4 Block Diagram Figure 1.2: Block Diagram of the EX-96085 # 1.5 Mainboard # **Specifications** ## CPU: Socket 478 Intel Celeron® M up to 1.0GHz Auto detect voltage regulator. ## **Chipset:** Intel® 855GME+ICH4 ## DRAM: One 200-pin DDRAM SO-DIMM up to 1GB ## Cache: **Built-in CPU** ## **BIOS:** Phoenix-Award Flash BIOS for plug & play function. Memory size with 4MB and with VGA BIOS. #### **IDE Interface:** One EIDE (UDMA-33/66/100) support 2 IDE devices, one compact flash type II onboard ## **Serial Port:** Four high speed 16550 Compatible UARTs with Send / Receive 16 Byte FIFOs. #### **Parallel Port:** One parallel (SPP/EPP/ECP) ## CMOS: Built-in chipset with external battery ## **Keyboard and Mouse:** PS/2 (mini DIN connector) ## Speaker: Internal buzzer and external speaker connector #### VGA: Integrated in Built-in Intel 855GME, share system memory, support CRT, LVDS #### LAN: Intel 82541 Chip. RJ-45 jack onboard, Support for 10/100/1000 Base-T Ethernet. Support Wake-On-LAN function. ## Sound: AC '97 Codec, ALC202A, with line-in, line-out, mic #### **USB:** Two USB 2.0 ## **Expansion Bus:** One Mini-PCI #### **Hardware Monitor:** Voltage, CPU temperature and cooling fan ## **Green Function:** Controlled by hardware and software # LCD Display: 8-inch SVGA TFT panel ## **Touch Screen:** Analog resistive # **Drive Bays:** One 2.5-inch HDD (optional) # **Power Supply:** DC 11~28V with 12V/60W AC universal power adapter ## **Construction:** Electro galvanized steel chassis, aluminum front bezel # **International Protection:** IP65, against dust and powerful jetting # **System Applications:** Microsoft® Windows CE.NET 4.2, 2000/XP # 1.6 Brief Description of the EX-96085 The EX-96085 is a compact, panel-mount industrial touch panel computer with 8-inch TFT LCD (400cd/m²). The EX-96085 is powered by a Intel Celeron 600MHz or Celeron M 1GHz processor. It comes with a compact flash, 256MB DDR RAM memory, 2 serial ports, audio, Ethernet, DC input, and USB ports. The unit supports Windows 2000 Professional, Windows XP, Windows XP Embedded and CE.Net. Its metal steel enclosure supports panel-mount are designed for ease of installation and maintenance. This compact touch panel computer is ideal for use as Web Browser, Terminal and HMI at all levels of automation control. Figure 1.3: Front View of EX-96085 Figure 1.4: Rear View of EX-96085 # 2.1 Installation of the EX-96085 # **Fanless Touch Panel Computer** # 2.1 Removal of Heat pipe module & Chassis Cover There are 8 screws to deal with when enclosing or removing the chassis. Four are on the heat sink and four on the side of top-cover. # 2.2 Removing HDD rack Remove the HDD rack by loosening the four screws as circled. # 2.3 Closing Chassis Close the chassis in the same way as it was opened. Just tighten the 8 screws as circled and the installation of the EX-96085 is completely done. # 2.4 Panel Mounting The EX-96085 HMI Controller is designed to be panel-mounted and VESA mounted as shown in Figure 2.1 and 2.2. Figure 2.1: Panel-mounting Figure 2.2: VESA Mount # 3.1 JUMPER & CONNECTOR QUICK REFERENCE TABLE | COM1 RI & Voltage Selection | JP6 | |---------------------------------|--------------------------| | COM2 RI & Voltage Selection | JP7 | | COM3 RI & Voltage Selection | JP9 | | COM4 RI & Voltage Selection | JP8 | | RS232/422/485 (COM2) Selection | JP13 | | Brightness Voltage Selection | JP1 | | LVDS Voltage Selection | JP12 | | LVDS Panel Resolution Selection | JP10 | | CMOS Function Selection | JP2 | | Watchdog Reset/NMI Selection | JP4 | | CPU_VCCA Voltage Selection | JP5 | | CPU Frequency Selection | JP3 | | VGA Connector | VGA1 | | LVDS Connector | LVDS1 | | COM Port Connector | COM1, COM2 | | | COM3, COM4 | | Power Connector | JATX1 | | Hard Disk Drive Connector | IDE1 | | Printer Connector | JPRNT1 | | LAN Connector | LAN1 | | LAN LED Connector | LANLED1 | | Keyboard Connector | KB1 | | PS/2 Mouse Connector | MS1 | | HDD LED Connector | HDLED1 | | Power Button | JPW1 | | Power LED Connector | PWLED1 | | USB Connector | . USB1, USB2, USB3, USB4 | | Memory Installation | . DIMM1 | |
Inverter Connector | .JINV1 | | IDE Power Module | POWER1 | | Compact Flash Connector | .CF1 | | PC104+ Connector | . PC104PLUS1 | | CPU Fan Connector | .JCFAN1 | | System Fan Connector | JSFAN1 | | Serial ATA Connector | SATA1 | |---------------------------|-------| | Reset & Speaker Connector | . J1 | # **3.2 COMPONENT LOCATIONS** Main Board's Connector, Jumper and Component locations # 3.3 HOW TO SET THE JUMPERS You can configure your board by setting the jumpers. Jumper is consists of two or three metal pins with a plastic base mounted on the card, and by using a small plastic "cap", Also known as the jumper cap (with a metal contact inside), you are able to connect the pins. So you can set-up your hardware configuration by "opening" or "closing" pins. The jumper can be combined into sets that called jumper blocks. When the jumpers are all in the block, you have to put them together to set up the hardware configuration. The figure below shows how this looks like. #### **JUMPERS AND CAPS** If a jumper has three pins for example, labelled PIN1, PIN2, and PIN3. You can connect PIN1 & PIN2 to create one setting and shorting. You can either connect PIN2 & PIN3 to create another setting. The same jumper diagrams are applied all through this manual. The figure below shows what the manual diagrams look and what they represent. ## **JUMPER DIAGRAMS** ## **JUMPER SETTINGS** **JUMPER DIAGRAMS** #### **JUMPER SETTINGS** #### **Main board Jumper Illustration** # 3.4 COM 1 RI & VOLTAGE SELECTION JP6: COM1 RI & Voltage Selection The selections are as follows: # 3-5. COM 2 RI & VOLTAGE SELECTION JP7: COM2 RI & Voltage Selection The selections are as follows: # 3-6. COM 3 RI & VOLTAGE SELECTION JP9: COM3 RI & Voltage Selection The selections are as follows: # 3-7. COM 4 RI & VOLTAGE SELECTION JP8: COM4 RI & Voltage Selection The selections are as follows: | SELE | CTION | JUMPER SETTING (Pin Closed) | JUMPER ILLUSTRATION | |------|-----------------|-----------------------------|---------------------| | | RI
(default) | 1-2 | 1 2 2 6 JP6 | | COM1 | 12V | 3-4 | 1 | | | 5V | 5-6 | 1 | | SELE | CTION | JUMPER SETTING (Pin Closed) | JUMPER
ILLUSTRATION | |------|-----------------|-----------------------------|------------------------| | COM2 | RI
(default) | 1-2 | 1 | | | 12V | 3-4 | 1 | | | 5V | 5-6 | 1 | |--|----|-----|---| |--|----|-----|---| | SELE | CTION | JUMPER SETTING (Pin Closed) | JUMPER ILLUSTRATION | |------|-----------------|-----------------------------|---------------------| | | RI
(default) | 1-2 | 6 | | сомз | 12V | 3-4 | 6 | | | 5V | 5-6 | 6 | | SELE | CTION | JUMPER SETTING (Pin Closed) | JUMPER
ILLUSTRATION | |------|-----------------|-----------------------------|------------------------| | COM4 | RI
(default) | 1-2 | 6 2 1 JP8 | | 12V | 3-4 | 6 | |-----|-----|---| | 5V | 5-6 | 6 | # 3.8 RS232/422/485 (COM2) SELECTION JP13: RS-232/422/485 (COM2) Selection COM2 is selectable for RS-232, 422, 485 function. The jumper settings are as follows: | COM 2 | JUMPER
SETTING (pin | JUMPER ILLUSTRATION | |---------------------|------------------------|---------------------| | FUNCTION | closed) | | | RS-232
(default) | Open | | | RS-422 | 1-2, 3-4, 9-10 | | | RS-485 | 1-2, 5-6, 7-8 | | # 3.9 BRIGHTNESS VOLTAGE SELECTION JP1: Brightness Voltage Selection The selections are as follows: | SELECTION | JUMPER SETTING (Pin Closed) | JUMPER ILLUSTRATION | |--------------|-----------------------------|---------------------| | 5V (default) | 2-3 | JP1 | | 2.5V | 1-2 | JP1 | # 3.10 LVDS VOLTAGE SELECTION JP12: LVDS Voltage Selection The selections are as follows: | SELECTION | JUMPER SETTING | JUMPER | |-----------|----------------|--------------| | SELECTION | (Pin Closed) | ILLUSTRATION | | VCC 3.3 | 1-3, 2-4 | 5 1 2 JP12 | | VCC 5 | 3-5, 4-6 | 5 1 2 JP12 | # 3.11 LVDS PANEL RESOLUTION SELECTION JP10: LVDS Panel Resolution Selection. The selections are as follows: | FUNCTION | JUMPER SETTING (pin closed) | JUMPER
ILLUSTRATION | |--------------------------------|-----------------------------|------------------------| | 640 x 480 | 1-2 | | | 800 x 600 (10.4")
(default) | 3-4 | | | 1024 x 768 (15") | 5-6 | | | 1280 x 1024 | 7-8 | | # 3.12 CMOS FUNCTION SELECTION JP2: CMOS Function Selection The selections are as follows: | FUNCTION | JUMPER
SETTING (pin
closed) | JUMPER
ILLUSTRATION | |------------------|-----------------------------------|------------------------| | NORMAL (default) | Open | | | CLEAR CMOS | 1-2 | | To clear CMOS data, user must power-off the computer and set the jumper to "Clear CMOS" as illustrated above. After five to six seconds, set the jumper back to "Normal" and power-on the computer. # 3.13 RESET / NMI SELECTION JP4: Reset/NMI/Clear Watchdog Selection The selections are as follows: | FUNCTION | JUMPER SETTING | JUMPER | | |-----------------|----------------|--------------|--| | | | ILLUSTRATION | | | Reset (default) | 3-4 | 7 | | | NMI | 5-6 | 7 | | User may select to use the Reset or NMI watchdog. NMI, also known as Non-Maskable Interrupt, is used for serious conditions that demand the processor's immediate attention, it cannot be ignored by the system unless it is shut off specifically. To clear NMI command, user should short the "Clear Watchdog" pin via push button. # 3.14 CPU_VCCA VOLTAGE SELECTION JP5: CPU_VCCA Voltage Selection The selections are as follows: | SELECTION | JUMPER SETTING | JUMPER | |-----------|----------------|--------------| | SELECTION | (Pin Closed) | ILLUSTRATION | | VCCA 1.8V | 1-2 | ² | | VCCA 1.5V | 1-3 | ² | ^{***} Manufacturing Default: VCCA 1.8V. # 3.15 CPU FREQUENCY SELECTION **JP3**: CPU Frequency Selection The selections are as follows: | SELECTION | JUMPER SETTING
(Pin Closed) | JUMPER
ILLUSTRATION | |-----------|--------------------------------|------------------------| | 100 MHz | 1-2 | 3 1 2 1 2 JP3 | ^{***} Manufacturing Default: 100MHz. # 3.16 COM PORT CONNECTOR There are four COM ports enhanced in this board namely: COM1, COM2, COM3 and COM4. COM1, COM3 and COM4 are fixed for RS-232, while COM2 is selectable for RS-232/422/485. **COM1**: COM1 Connector The COM1 Connector assignments are as follows: | PIN | ASSIGNMENT | |-----|------------| | 1 | DCD1 | | 2 | RX1 | | 3 | TX1 | | 4 | DTR1 | | 5 | GND | | 6 | DSR1 | | 7 | RTS1 | | 8 | CTS1 | | 9 | RI1 | COM2: COM2 Connector The COM2 Connector assignments are as follows: | PIN | ASSIGNMENT | | | |-----|------------|--------|--------| | | RS-232 | RS-422 | RS-485 | | 1 | DCD2 | TX- | TX- | | 2 | RX2 | TX+ | TX+ | | 3 | TX2 | RX+ | RX+ | | 4 | DTR2 | RX- | RX- | | 5 | GND | GND | GND | | 6 | DSR2 | RTS- | NC | | 7 | RTS2 | RTS+ | NC | | 8 | CTS2 | CTS+ | NC | | 9 | RI2 | CTS- | NC | COM₂ COM3: COM3 Connector The pin assignments are as follows: | PIN | ASSIGNMENT | |-----|------------| | 1 | DCD3 | | 2 | RX3 | | 3 | TX3 | | 4 | DTR3 | | 5 | GND | | 6 | DSR3 | | 7 | RTS3 | | 8 | CTS3 | | 9 | RI3 | | 10 | NC | **COM4**: COM4 Connector The pin assignments are as follows: | PIN | ASSIGNMENT | |-----|------------| | 1 | DCD4 | | 2 | RX4 | | 3 | TX4 | | 4 | DTR4 | | 5 | GND | | 6 | DSR4 | | 7 | RTS4 | | 8 | CTS4 | | 9 | RI4 | | 10 | NC | All COM port's pin 9 is selectable for RI, +5V or +12V. For more information, please refer to our "2-5 COM RI and Voltage Selection". # 3.17 VGA CONNECTOR VGA1: VGA Connector The pin assignments are as follows: | PIN | ASSIGNMENT | |-----|--------------| | 1 | RED | | 2 | GREEN | | 3 | BLUE | | 4 | NC | | 5 | GND | | 6 | GND | | 7 | GND | | 8 | GND | | 9 | VCC | | 10 | GND | | 11 | NC | | 12 | VGA DDC DATA | | 13 | HSYNC | | 14 | VSYNC | | 15 | VGA DDC CLK | | 16 | NC | # 3.18 LVDS CONNECTOR LVDS1: LVDS Connector The pin assignments are as follows: | PIN | ASSIGNMENT | PIN | ASSIGNMENT | |-----|------------|-----|------------| | 1 | LVDS_VCC | 2 | GND | | 3 | ZCN | 4 | ZCP | | 5 | GND | 6 | Z2N | | 7 | Z2P | 8 | GND | | 9 | Z1N | 10 | Z1P | | 11 | Z3P | 12 | Z3N | | 13 | Z0P | 14 | Z0N | | 15 | GND | 16 | YCP | | 17 | YCN | 18 | GND | | 19 | Y2P | 20 | Y2N | | 21 | GND | 22 | Y1P | | 23 | Y1N | 24 | GND | | 25 | Y0P | 26 | Y0N | | 27 | Y3P | 28 | Y3N | | 29 | LVDS_VCC | 30 | LVDS_VCC | # 3.19 POWER CONNECTOR JATX1: Power Connector The pin assignments are as follows: | PIN | ASSIGNMENT | |-----|------------| | | 5V | | | 5V | | | GND | | | GND | | | 12V | | | 5VSB | | | 5V | | | GND | | | PS_ON | | | -12V | # 3.20 HARD DISK DRIVE CONNECTOR **IDE1**: Hard Disk Drive Connector The pin assignments are as follows: | PIN | ASSIGNMENT | PIN | ASSIGNMENT | | |-----|------------|-----|------------|--| | 1 | IDERSTJ | 2 | GND | | | 3 | PDD7 | 4 | PDD8 | | | 5 | PDD6 | 6 | PDD9 | | | 7 | PDD5 | 8 | PDD10 | | | 9 | PDD4 | 10 | PDD11 | | | 11 | PDD3 | 12 | PDD12 | | | 13 | PDD2 | 14 | PDD13 | | | 15 | PDD1 | 16 | PDD14 | | | 17 | PDD0 | 18 | PDD15 | | | 19 | GND | 20 | NC | | | 21 | DDREQA | 22 | GND | | | 23 | DIOWAJ | 24 | GND | | | 25 | DIORAJ | 26 | GND | | | 27 | HDRDYA | 28 | PULL LOW | | | 29 | DDACKAJ | 30 | GND | | | 31 | IDE_IRQ14 | 32 | NC | | | 33 | PDA1 | 34 | PD_80P | | | 35 | PDA0 | 36 | PDA2 | | | 37 | PDCSJ1 | 38 | PDCSJ3 | | | 39 | HDLEDJ1 | 40 | GND | | | 41 | 5V | 42 | 5V | | | 43 | GND | 44 | NC | | # **3.21 PRINTER CONNECTOR** JPRNT1: Printer Connector As to link the Printer to the card, you need a cable to connect both DB25 connector and parallel port. The pin assignments are as follows: | PIN | ASSIGNMENT | PIN | ASSIGNMENT | |-----|------------|-----|------------| | 1 | STROBE | 14 | AFDJ | | 2 | PPD0 | 15 | ERRORJ | | 3 | PPD1 | 16 | INITJ | | 4 | PPD2 | 17 | SLINJ | | 5 | PPD3 | 18 | GND | | 6 | PPD4 | 19 | GND | | 7 | PPD5 | 20 | GND | | 8 | PPD6 | 21 | GND | | 9 | PPD7 | 22 | GND | | 10 | ACKJ | 23 | GND | | 11 | BUSY | 24 | GND | | 12 | PE | 25 | GND | | 13 | SLCT | | | # 3.22 LAN CONNECTOR LAN1: LAN Connector. The pin assignment is as follows: | PIN | ASSIGNMENT | |-----|------------| | 1 | MDI_0P | | 2 | MDI_0N | | 3 |
MDI_1P | | 4 | MDI_2P | | 5 | MDI_2N | | 6 | MDI_1N | | 7 | MDI_3P | | 8 | MDI_3N | # 3.23 LAN LED CONNECTOR LANLED1: LAN LED Connector The pin assignment is as follows: | PIN | ASSIGNMENT | |-----|------------| | 1 | LED100 | | 2 | CONTROL | | 3 | LED1000 | # 3.24 KEYBOARD CONNECTOR KB1: PC/AT Keyboard Connector The pin assignments are as follows: | PIN | ASSIGNMENT | |-----|------------| | 1 | KB DATA | | 2 | NC | | 3 | GND | | 5 | 5VSB | | 6 | KB CLK | | 8 | NC | # KB₁ # 3.25 PS/2 MOUSE CONNECTOR MS1: PS/2 Mouse Connector The pin assignments are as follows: | PIN | ASSIGNMENT | |-----|------------| | 1 | MS DATA | | 2 | NC | | 3 | GND | | 5 | 5VSB | | 6 | MS CLK | | 8 | NC | MS₁ # 3.26 HDD LED CONNECTOR HDLED1: HDD LED Connector The pin assignment is as follows: | PIN | ASSIGNMENT | |-----|------------| | 1 | HD_LED+ | | 2 | HD_LED- | # 3.27 POWER BUTTON JPW1: Power Button The pin assignments are as follows: | PIN | ASSIGNMENT | |-----|------------| | 1 | PWR_BN1 | | 2 | PWR_BN2 | ## 3.28 POWER LED CONNECTOR PWLED1: Power LED Connector. The pin assignments are as follows: | PIN | ASSIGNMENT | |-----|------------| | 1 | PW_LED+ | | 2 | GND | # 3.29 UNIVERSAL SERIAL BUS CONNECTOR USB1: Universal Serial Bus Connector. The pin assignments are as follows: | PIN | ASSIGNMENT | |-----|------------| | 1 | 5V_USB0 | | 2 | USB0N | | 3 | USB0P | | 4 | GND | USB2: Universal Serial Bus Connector. The pin assignments are as follows: | PIN | ASSIGNMENT | |-----|------------| | 1 | 5V_USB1 | | 2 | USB1N | | 3 | USB1P | | 4 | GND | USB3: Universal Serial Bus Connector. The pin assignments are as follows: | PIN | ASSIGNMENT | |-----|------------| | 1 | 5V_USB2 | | 3 | USB2N | | 5 | USB2P | | 7 | GND | | 9 | GND | | 2 | 5V_USB3 | | 4 | USB3N | | 6 | USB3P | | 8 | GND | |----|-----| | 10 | GND | **USB4**: Universal Serial Bus Connector. The pin assignments are as follows: | PIN | ASSIGNMENT | |-----|------------| | 1 | 5V_USB4 | | 3 | USB4N | | 5 | USB4P | | 7 | GND | | 9 | GND | | 2 | 5V_USB5 | | 4 | USB5N | | 6 | USB5P | | 8 | GND | | 10 | GND | # 3.30 MEMORY INSTALLATION This system is enhanced with 1 DDR DRAM banks, which support up to 1G. #### **DRAM BANK CONFIGURATION** | DIMM 1 | TOTAL MEMORY | |--------|--------------| | 128M | 128MB | | 256M | 256MB | | 512M | 512MB | | 1G | 1G | # 3.31 INVERTER CONNECTOR JINV1: Inverter Connector. The pin assignments are as follows: | PIN | ASSIGNMENT | |-----|---------------------------| | 1 | VCC12 | | 2 | GND | | 3 | BRCTR | | 4 | NC | | 5 | ENVEE (Inverter backlight | | | On/Off control signal) | # 3.32 POWER MODULE **POWER1:** Power Module. The pin assignments are as follows: | PIN | ASSIGNMENT | PIN | ASSIGNMENT | |-----|------------|-----|------------| | 1 | +5V | 2 | 5VSB | | 3 | +5V | 4 | 5VSB | | 5 | +5V | 6 | 5VSB | | 7 | +5V | 8 | +5V | | 9 | +5V | 10 | +5V | | 11 | +5V | 12 | +5V | | 13 | GND | 14 | GND | | 15 | GND | 16 | GND | | 17 | GND | 18 | GND | | 19 | PS-ON | 20 | GND | | 21 | NC | 22 | GND | | 23 | NC | 24 | GND | | 25 | -12V | 26 | +12V | | 27 | -12V | 28 | +12V | | 29 | -12V | 30 | +12V | | 31 | NC | 32 | NC | | 33 | NC | 34 | NC | | 35 | NC | 36 | NC | | 37 | NC | 38 | NC | | 39 | NC | 40 | NC | # 3.33 COMPACT FLASH CONNECTOR **CF1**: Compact Flash Connector. The pin assignments are as follows: | PIN | ASSIGNMENT | PIN | ASSIGNMENT | |-----|------------|-----|------------| | 1 | GND | 26 | GND | | 2 | D03 | 27 | D11 | | 3 | D04 | 28 | D12 | | 4 | D05 | 29 | D13 | | 5 | D06 | 30 | D14 | | 6 | D07 | 31 | D15 | | 7 | CSJ1 | 32 | CSJ3 | | 8 | GND | 33 | GND | | 9 | GND | 34 | SDIORDJ | | 10 | GND | 35 | SDIOWRJ | | 11 | GND | 36 | +5V | | 12 | GND | 37 | IRQ15 | | 13 | +5V | 38 | +5V | | 14 | GND | 39 | -CSEL | | 15 | GND | 40 | NC | | 16 | GND | 41 | RESETJ | | 17 | GND | 42 | IORDY | | 18 | A02 | 43 | REQ | | 19 | A01 | 44 | ACKJ | | 20 | A00 | 45 | CF_LEDJ | | 21 | D00 | 46 | -PDIAG | | 22 | D01 | 47 | D08 | | 23 | D02 | 48 | D09 | | 24 | NC | 49 | D10 | | 25 | GND | 50 | GND | # 3.34 PCI-104 CONNECTOR PC104PLUS1: PCI-104 Connector. The pin assignments are as follows: | Α | | В | | | С | | D | | |-----|------------|-----|------------|-----|------------|-----|------------|--| | PIN | ASSIGNMENT | PIN | ASSIGNMENT | PIN | ASSIGNMENT | PIN | ASSIGNMENT | | | A1 | GND | B1 | SERIR | C1 | +5V | D1 | AD00 | | | A2 | NC | B2 | AD02 | C2 | AD01 | D2 | +5V | | | А3 | AD05 | В3 | GND | C3 | AD04 | D3 | AD03 | | | A4 | CBEJ0 | B4 | AD07 | C4 | GND | D4 | AD06 | | | A5 | GND | B5 | AD09 | C5 | AD08 | D5 | GND | | | A6 | AD11 | В6 | NC | C6 | AD10 | D6 | M66EN | | | A7 | AD14 | В7 | AD13 | C7 | GND | D7 | AD12 | | | A8 | +3.3V | B8 | CBEJ1 | C8 | AD15 | D8 | +3.3V | | | A9 | SERRJ | В9 | GND | C9 | NC | D9 | PAR | | | A10 | GND | B10 | PERRJ | C10 | +3.3V | D10 | SDONE | | | A11 | STOPJ | B11 | +3.3V | C11 | LOCKJ | D11 | GND | | | A12 | +3.3V | B12 | TRDYJ | C12 | GND | D12 | DEVSELJ | | | A13 | FRAMEJ | B13 | GND | C13 | IRDYJ | D13 | +3.3V | | | A14 | GND | B14 | AD16 | C14 | +3.3V | D14 | CBEJ2 | | | A15 | AD18 | B15 | +3.3V | C15 | AD17 | D15 | GND | | | A16 | AD21 | B16 | AD20 | C16 | GND | D16 | AD19 | | | A17 | +3.3V | B17 | AD23 | C17 | AD22 | D17 | +3.3V | | | A18 | IDSEL0 | B18 | GND | C18 | IDSEL1 | D18 | IDSEL2 | | | A19 | AD24 | B19 | CBEJ3 | C19 | NC | D19 | IDSEL3 | | | A20 | GND | B20 | AD26 | C20 | AD25 | D20 | GND | | | A21 | AD29 | B21 | +5V | C21 | AD28 | D21 | AD27 | | | A22 | +5V | B22 | AD30 | C22 | GND | D22 | AD31 | | | A23 | REQJ0 | B23 | GND | C23 | REQJ1 | D23 | NC | | | A24 | GND | B24 | REQJ2 | C24 | +5V | D24 | GNTJ0 | | | A25 | GNTJ1 | B25 | NC | C25 | GNTJ2 | D25 | GND | | | A26 | +5V | B26 | PCLK1 | C26 | GND | D26 | PCLK2 | | | A27 | PCLK3 | B27 | +5V | C27 | PCLK4 | D27 | GND | | | A28 | GND | B28 | INTDJ | C28 | +5V | D28 | RSTJ | | | A29 | +12V | B29 | INTAJ | C29 | INTBJ | D29 | INTCJ | | | A30 | -12V | B30 | NC | C30 | NC | D30 | GND | | # 3.35 CPU FAN CONNECTOR JCFAN1: CPU Fan Connector | PIN | ASSIGNMENT | |-----|---------------| | 1 | GROUND | | 2 | FAN_VCC12 | | 3 | FAN_SPEED OUT | | 4 | FAN_PWM | # 3.36 SYSTEM FAN CONNECTOR **JSFAN1**: System FAN Connector | PIN | ASSIGNMENT | |-----|------------| | 1 | VCC12 | | 2 | GND | # 3.37 SERIAL ATA CONNECTOR **SATA1**: Serial ATA Connector | PIN | ASSIGNMENT | |-----|--------------| | 1 | GND | | 2 | SATAHDR_TXP0 | | 3 | SATAHDR_TXN0 | | 4 | GND | | 5 | SATAHDR_RXN0 | | 6 | SATAHDR_RXP0 | | 7 | GND | # 3.38 RESET & SPEAKER CONNECTOR **J1**: Reset and Speaker Connector | PIN | ASSIGNMENT | |-----|------------| | 1 | SPK_VCC | | 2 | SPK | | 3 | RST_SW | | 4 | GND | ## 4.1 Introduction to Software Utilities Enclosed with our EX-96085 package is our driver utility, which may comes in a form of a CD ROM disc or floppy diskettes. For CD ROM disc user, you will only need some of the files contained in the CD ROM disc, please kindly refer to the following chart: | Filename (Assume that CD | Purpose | |--------------------------|-----------------------------------| | ROM drive is D:) | | | D:\6xx5\Driver\VGA | Intel 855GME For VGA driver | | | installation | | D:\6xx5\Driver\ Flash | For flash BIOS update | | D:\6xx5\ Driver\ LAN | For LAN Driver installation | | D:\ 6xx5\Driver\ Sound | Realtel ALC202A AC97 For | | | Sound driver installation | | D:\ 6xx5\Driver\ Utility | Intel® Chipset Software | | | Installation Utility For Win98SE, | | | ME, 2000, XP | | D:\ 6xx5\Driver\ USB2.0 | USB 2.0 Software Installation | | | Utility For Win 98SE, 2000, ME, | | | XP | | D:\6xx5\Driver\ SATA | Silicon for SATA Driver | | | installation | ## **4.2 VGA DRIVER UTILITY** The VGA interface embedded with our EX-96085 can support a wide range of display. You can display CRT, LVDS simultaneously with the same mode. #### 4.2.1 Installation of VGA Driver: To install the VGA Driver, simply follow the following steps: Click "intel® VGA 855GME Chipset" ## **4.3 FLASH BIOS UPDATE** #### 4-3-1. Introduction Users of EX-96085 can use the program "Awdflash.exe" contained in the Utility Disk for system BIOS update. #### 4-3-2. Installation of system BIOS - 1 Copy "Awdflash.exe" from Driver Disk to Drive C. - 2 Type the path to Awdflash.exe and execute the system BIOS AWDFLASH 7500xxxx.bin - 3 The screen will display the table below: If you want to save up the original BIOS, enter "Y" and press < Enter > . If you choose "N", the following table will appear on screen. FLASH MEMORY WRITER V7.XX (C) Award Software 2001 All Rights Reserved Flash Type - 49LF004B File Name to Program: 7500xxxx.bin Error Message : Are You Sure To Program (Y/N) Select "Y", and the BIOS will be renewed. When you are refreshing the BIOS, do not turn off or reset the system, or you will damage the BIOS. After you have completed all the programming, the screen displays the table below: FLASH MEMORY WRITER V7.XX (C) Award Software 2001 All Rights Reserved Flash Type –49LF004B File Name to Program: 7500xxxx.bin Verifying Flash Memory – 7FFFF OK Write OK No Update Write Fail F1: Reset F10: Exit Please reset or power off the system, then the Flash BIOS is fully implemented. ### 4.4 LAN DRIVER UTILITY #### 4-4-1. Introduction The EX-96085 Panel PC is enhanced with LAN function that can support various network adapters. Installation programs for LAN drivers are listed as follows: To install the LAN Driver, simply follow the following steps: Click "intel® Network Adapter" # **4.5 SOUND DRIVER UTILITY** #### 4-5-1. Introduction The Realtek ALC202A sound function enhanced in this system is fully compatible with Windows 98, Windows NT 4.0, Windows 2000, Windows XP and Linux. Below, you will find the content of the Sound driver: To install the Sound Driver, simply follow the following steps: Click "Realtek AC97 Sound System" ## 4.6 INTEL® C HIPSET SOFTWARE INSTALLATION UTILITY #### 4-6-1. Introduction The Intel® Chipset Software Installation Utility installs to the target system the Windows* INF files that outline to the operating system how the chipset
components will be configured. This is needed for the proper functioning of the following features: -Core PCI and ISAPNP Services -AGP Support -IDE/ATA33/ATA66/ATA100 Storage Support -USB Support -Identification of Intel® Chipset Components in Device Manager To install the Chipset Driver, simply follow the following steps: Click "intel® Chipset software installation Utility" ## 4.7 USB2.0 SOFTWARE INSTALLATION UTILITY #### 4-7-1. Installation of Utility for Windows 98SE/ 2000/XP Intel USB 2.0 Enhanced Host Controller driver can only be used on Windows 98SE, Windows 2000 and Windows XP on Intel Desktop boards. It should be installed right after the OS installation, kindly follow the following steps: - 1 Place insert the Utility Disk into Floppy Disk Drive A/B or CD ROM drive. - 2 Under Windows 98SE, 2000, and XP system, go to the directory where Utility Disc is located. - 3 Start the "System" wizard in control panel. (Click Start/Settings/Control Panel). - 4 Select "Hardware" and click "Device Manager" button. - 5 Double Click "USB Root Hub". - 6 Select "Driver". - 7 Click "Install" to install the driver. - 8 Follow the instructions on the screen to complete the installation. - 9 Click "Finish" after the driver installation is complete. ## 4.8. SERIAL ATA DRIVER UTILITY #### 4-8-1. Installation of Utility for Windows 98SE/ 2000/ XP Silicon Image SATA Sil3512 Controller driver can only be used on Windows 98SE, Windows 2000 and Windows XP on Intel Desktop boards. It should be installed right after the OS installation, kindly follow the following steps: - 1 Please insert the Utility Disk into Floppy Disk Drive A/B or CD ROM drive. - 2 Under Windows 98SE, 2000, and XP system, go to the directory where Utility Disc is located. - 3 Start the "System" wizard in control panel. (Click Start/Settings/ Control Panel). - 4 Select "Hardware" and click "Device Manager" button. - 5 Double click "RAID Controller". - 6 Select "Driver". - 7 Click "Si3112r" to install the driver. - 8 Follow the instructions on the screen to complete the installation. - 9 Click "Finish" after the driver installation is complete. ### 4.9 WATCHDOG TIMER CONFIGURATION The Watch-dog Timer has a programmable time-out ranging from 1 to 255 minutes with one minute resolution, or 1 to 255 seconds with 1 second resolution. The units of the WDT timeout value are selected via bit[7] of the WDT_TIMEOUT register, which is located on I/O Port address 0x865h. The WDT time-out value is set through the WDT_VAL Runtime register, which is located on I/O Port address 0x866h. Setting the WDT_VAL register to 0x00 disables the WDT function Setting the WDT_VAL to any other non-zero value will cause the WDT to reload and begin counting down from the value loaded. Setting the Register located on I/O address 0x867h and 0x868h as 00h to finish timer configuration. #### **Example Program** ``` Example Code: (1) ; Enable Watch-Dog Timer dx,(800h+65h) ;Time counting Unit minute or second al,80h ;al = 00h : minute, or al = 80h : mov mov second out dx,al dx, (800h+66h) mov ;al=Watch Dog Timer Second(s) , 20 sec(s) dx,al dx, (800h+67h) mov al,00h out dx,al dx, (800h+68h) ;Start Watch Dog Timer mov al,00h out (2) ;Disable Watch-Dog Timer dx,(800h+66h) ;Disabled Watch Dog mov al.00h out dx,al dx, (800h+67h) mov out dx.al dx, (800h+68h) ;Clear Status Bit mov al,00h out ``` ## 5.1 Introduction to Award Bios Setup This chapter will show you the function of the BIOS in managing the features of your system. The EX-96085 Panel PC is equipped with the BIOS for system chipset from Award Software Inc. This page briefly explains the function of the BIOS in managing the special features of your system. The following pages describe how to use the BIOS for system chipset Setup menu. Your application programs (such as word processing, spreadsheets, and games) rely on an operating system such as DOS or OS/2 to manage such things as keyboard, monitor, disk drives, and memory. The operating system relies on the BIOS (Basic Input and Output system), a program stored on a ROM (Read-only Memory) chip, to initialize and configure your computer's hardware. As the interface between the hardware and the operating system, the BIOS enables you to make basic changes to your system's hardware without having to write a new operating system. The following diagram illustrates the interlocking relationships between the system hardware, BIOS, operating system, and application program: ## 5.2 ENTERING SETUP When the system is powered on, the BIOS will enter the Power-On Self Test (POST) routines and the following message will appear on the lower screen: #### PRESS < DEL> TO ENTER SETUP, ESC TO SKIP MEMORY TEST As long as this message is present on the screen you may press the key (the one that shares the decimal point at the bottom of the number keypad) to access the Setup program. In a moment, the main menu of the Award SETUP program will appear on the screen: #### Phoenix - AwardBIOS CMOS Setup Utility - ► Standard CMOS Features - ► Advanced BIOS Features - ► Advanced Chipset Features - ► Integrated Peripherals - ► Power Management Setup - ► PnP/PCI Configurations - ▶PC Health Status ► Frequency Control Load Fail-Safe Defaults Load Optimized Defaults Set Supervisor Password Set User Password Save & Exit Setup Exit Without Saving Esc : Quit $\uparrow \downarrow \rightarrow \leftarrow$: Select Item F10 : Save & Exit Setup Time, Date, Hard Disk Type #### Setup program initial screen You may use the cursor the up/down keys to highlight the individual menu items. As you highlight each item, a brief description of the highlighted selection will appear at the bottom of the screen. ### 5.3 THE STANDARD CMOS FEATURES Highlight the "STANDARD CMOS FEATURES" and press the <ENTER> key and the screen will display the following table: # Phoenix - AwardBIOS CMOS Setup Utility Standard CMOS Features | Date (mm:dd:yy) | Wed, Feb 23 2005 | Item Help | |--|--|---| | Time (hh:mm:ss) | 9 : 32 : 52 | Menu Level ▶ | | ► IDE Primary Master ► IDE Primary Slave ► IDE Secondary Master ► IDE Secondary Slave | [None]
[None]
[None]
[None] | Change the day,
month, year and
century | | Video
Halt On | [EGA/VGA]
[All, But Keyboard] | | | Base Memory
Extended Memory
Total Memory | 640K
1013760K
1014784K | | | ↑↓→←: Move Enter: Sel
F1:General Help | ect +/-/PU/PD:Value F | 10:Save ESC:Exit | | F5: Previous Values Defaults | F6: Fail-Safe Defaults | F7:Optimized | #### **CMOS Setup screen** In the above Setup Menu, use the arrow keys to highlight the item and then use the <PgUp> or <PgDn> keys to select the value you want in each item. **Date:** < Month >, < Date > and <Year >. Ranges for each value are in the CMOS Setup Screen, and the week-day will skip automatically. **Time:** < Hour >, < Minute >, and < Second >. Use 24 hour clock format, i.e., for PM numbers, add 12 to the hour. For example: 4: 30 P.M. You should enter the time as 16:30:00. #### **IDE Primary Master / Slave:** #### **IDE Secondary Master / Slave:** The BIOS can automatically detect the specifications and optimal operating mode of almost all IDE hard drives. When you select type AUTO for a hard drive, the BIOS detect its specifications during POST, every time system boots. If you do not want to select drive type AUTO, other methods of selecting drive type are available: - 1.Match the specifications of your installed IDE hard drive(s) with the preprogrammed values for hard drive types 1 through 45. - 2 Select USER and enter values into each drive parameter field. - 3. Use the IDE HDD AUTO DETECTION function in Setup. Here is a brief explanation of drive specifications: Type: The BIOS contains a table of pre-defined drive types. Each defined drive type has a specified number of cylinders, number of heads, write precompensation factor, landing zone, and number of sectors. Drives whose specifications do not accommodate any predefine type are classified as type USER. - •Size: Disk drive capacity (approximate). Note that this size is usually greater than the size of a formatted disk given by a disk-checking program. - •Cyls: number of cylinders. - •Head: number of heads. - •Precomp: write precompensation cylinders. - ·Landz: landing zone. - Sector: number of sectors. - •Mode: Auto, Normal, Large or LBA. Auto: The BIOS automatically determines the optimal mode. - •Normal: Maximum number of cylinders, heads, sectors supported are 1024, 16 and 63. - •Large: For drives that do not support LBA and have more than 1024 cylinders. - •LBA (Logical Block Addressing): During drive accesses, the IDE controller transforms the data address described by sector, head and cylinder number into a physical block address, significantly improving data transfer rates. For drives greater than 1024 cylinders. **DRIVE A AND DRIVE B:** Select the type of floppy disk drive installed in your system. The available options are 360KB 5.25in, 1.2KB 5.25in, 720KB 3.5in, 1.44MB 3.5in, 2.88MB 3.5in and None. #### **VIDEO:** This category selects the type of video adapter used for the primary system monitor. Although secondary monitors are supported, you do not have to select the type in Setup. Available Options are as follows: | EGA/VGA | Enhanced Graphics Adapter/Video | | | | | |-------------------------------|--|--|--|--|--| | | Graphics Array. For EGA, VGA, SEGA, | | | | | | SVGA or PGA monitor adapters. | | | | | | | CGA 40 | Color Graphics Adapter, power up in 40 | | | | | | CGA 40 | column mode. | | | | | | CGA 80 | Color Graphics Adapter, power up in 80 | | | | | | CGA 60 | column mode. | | | | | | MONO | Monochrome adapter, includes high | | | | | resolution
monochrome adapters. **HALT ON:** This category allows user to choose whether the computer will stop if an error is detected during power up. Available options are "All errors", "No errors", "All, But keyboard", "All, But Diskette", and "All But Disk/Key". ### **BASE MEMORY:** Displays the amount of conventional memory detected during boot up. #### **EXTENDED MEMORY:** Displays the amount of extended memory detected during boot up. #### **TOTAL MEMORY:** Displays the total memory available in the system. #### **HARD DISK ATTRIBUTES:** | Тур | Cylinde | Hea | V-P | LZone | Sect | Capacity | |-----|---------|-----|-------|-------|------|----------| | е | rs | ds | comp | | | | | 1 | 306 | 4 | 128 | 305 | 17 | 10 | | 2 | 615 | 4 | 300 | 615 | 17 | 20 | | 3 | 615 | 6 | 300 | 615 | 17 | 30 | | 4 | 940 | 8 | 512 | 940 | 17 | 62 | | 5 | 940 | 6 | 512 | 940 | 17 | 46 | | 6 | 615 | 4 | 65535 | 615 | 17 | 20 | | 7 | 642 | 8 | 256 | 511 | 17 | 30 | | 8 | 733 | 5 | 65535 | 733 | 17 | 30 | | 9 | 900 | 15 | 65535 | 901 | 17 | 112 | | 10 | 820 | 3 | 65535 | 820 | 17 | 20 | | 11 | 855 | 5 | 65535 | 855 | 17 | 35 | | 12 | 855 | 7 | 65535 | 855 | 17 | 49 | | 13 | 306 | 8 | 128 | 319 | 17 | 20 | | 14 | 733 | 7 | 65535 | 733 | 17 | 42 | | 15 | 000 | 0 | 0000 | 000 | 00 | 00 | | 16 | 612 | 4 | 0000 | 663 | 17 | 20 | | 17 | 977 | 5 | 300 | 977 | 17 | 40 | | 18 | 977 | 7 | 65535 | 977 | 17 | 56 | | 19 | 1024 | 7 | 512 | 1023 | 17 | 59 | | 20 | 733 | 5 | 300 | 732 | 17 | 30 | | 21 | 733 | 7 | 300 | 732 | 17 | 42 | | 22 | 733 | 5 | 300 | 733 | 17 | 30 | | 23 | 306 | 4 | 0000 | 336 | 17 | 10 | | 24 | 977 | 5 | 65535 | 976 | 17 | 40 | |----|------|----|-------|------|----|-----| | 25 | 1024 | 9 | 65535 | 1023 | 17 | 76 | | 26 | 1224 | 7 | 65535 | 1223 | 17 | 71 | | 27 | 1224 | 11 | 65535 | 1223 | 17 | 111 | | 28 | 1224 | 15 | 65535 | 1223 | 17 | 152 | | 29 | 1024 | 8 | 65535 | 1023 | 17 | 68 | | 30 | 1024 | 11 | 65535 | 1023 | 17 | 93 | | 31 | 918 | 11 | 65535 | 1023 | 17 | 83 | | 32 | 925 | 9 | 65535 | 926 | 17 | 69 | | 33 | 1024 | 10 | 65535 | 1023 | 17 | 85 | | 34 | 1024 | 12 | 65535 | 1023 | 17 | 102 | | 35 | 1024 | 13 | 65535 | 1023 | 17 | 110 | | 36 | 1024 | 14 | 65535 | 1023 | 17 | 119 | | 37 | 1024 | 2 | 65535 | 1023 | 17 | 17 | | 38 | 1024 | 16 | 65535 | 1023 | 17 | 136 | | 39 | 918 | 15 | 65535 | 1023 | 17 | 114 | | 40 | 820 | 6 | 65535 | 820 | 17 | 40 | | 41 | 1024 | 5 | 65535 | 1023 | 17 | 42 | | 42 | 1024 | 5 | 65535 | 1023 | 26 | 65 | | 43 | 809 | 6 | 65535 | 852 | 17 | 40 | | 44 | 809 | 6 | 65535 | 852 | 26 | 61 | | 45 | 776 | 8 | 65335 | 775 | 33 | 100 | | 47 | | | | AUTO | | | | • | | | | | | | **Award Hard Disk Type Table** ## **5.4 THE ADVANCED BIOS FEATURES** Choose the "ADVANCED BIOS FEATURES" in the main menu, the screen shown as below. # Phoenix - AwardBIOS CMOS Setup Utility Advanced BIOS Features | Virus Warning | [Enabled] | Item Help | |--------------------------------|----------------------|----------------| | CPU L1 & L2 Cache | [Enabled] | | | CPU L3 Cache | [Enabled] | Menu Level ► | | Quick Power On Self Test | [Enabled] | | | First Boot Device | [SATA/SCSI] | | | Second Boot Device | [HDD-0] | | | Boot Up Floppy Seek | [Enabled] | | | Boot Up NumLock Status | [On] | | | Typematic Rate Setting | [Disabled] | | | x Typematic Rate (Chars/Sec) | 6 | | | x Typematic Delay (Msec) | 250 | | | Security Option | [Setup] | | | | | | | | | | | | | | | ↑↓→←: Move Enter: Select + | /-/PU/PD:Value F10 | :Save ESC:Exit | | F1:General Help F5: Previous \ | /alues F6: Fail-Safe | Defaults | | F7:Optimized Defaults | | | #### **BIOS Features Setup Screen** The "BIOS FEATURES SETUP" allow you to configure your system for basic operation. The user can select the system's default speed, boot-up sequence, keyboard operation, shadowing and security. A brief introduction of each setting is given below. **Virus Warning:** Allows you to choose the VIRUS warning feature for IDE Hard Disk boot sector protection. If this function is enabled and someone attempt to write data into this area, BIOS will show a warning message on screen and alarm beep. #### CPU L1 & L2 CACHE: This item allows you to enable L1 & L2 cache. **QUICK POWER ON SELF-TEST:** This item allows you to speed up Power On Self Test (POST) after power-up the computer. When enabled, the BIOS will shorten or skip some check items during POST. **FIRST/SECOND/BOOT DEVICE:** The BIOS attempt to load the operating system from the devices in the sequence selected in these items. **BOOT UP FLOPPY SEEK:** You may enable / disable this item to define whether the system will look for a floppy disk drive to boot at power-on, or proceed directly to the hard disk drive. #### **BOOT UP NUMLOCK STATUS:** Select power on state for NumLock. **TYPEMATIC RATE SETTING:** Enable this item if you wish to be able to configure the characteristics of your keyboard. Typematic refers to the way in which characters are entered repeatedly if a key is held down. For example, if you press and hold down the "A" key, the letter "a" will repeatedly appear on your screen on your screen until you release the key. When enabled, the typematic rate and typematic delay can be selected. **TYPEMATIC RATE (CHARS/SEC):** This item sets the number of times a second to repeat a key stroke when you hold the key down. **TYPEMATIC DELAY (MSEC):** The item sets the delay time after the key is held down before it begins to repeat the keystroke. #### **SECURITY OPTION:** This category allows you to limit access to the system and Setup, or just to Setup. | System | The system will not boot and access to Setup will be | |--------|--| | | denied if the correct password is not entered at the | | | prompt. | | Setup | The system will boot, but access to Setup will be | | | denied if the correct password is not entered at the | | | prompt. | ⊖To disable security, select PASSWORD SETTING at Main Menu and then you will be asked to enter password. Do not type anything and just press <Enter>, it will disable security. Once the security is disabled, the system will boot and you can enter Setup freely. ## **5.5 ADVANCED CHIPSET FEATURES** Choose the "ADVANCED CHIPSET FEATURES" from the main menu, the screen shown as below. # Phoenix - AwardBIOS CMOS Setup Utility Advanced Chipset Features | DRAM Timing Selectable | [By SPD] | Item Help | |---------------------------|-----------------------|---------------------| | X CAS Latency Time | [2.5] | | | Active to Precharge Delay | [7] | Menu Level ► | | X DRAM RAS# to CAS# Delay | [3] | | | X DRAM RAS# Precharge | [3] | | | DRAM Data Integrity Mode | [Non-ECC] | | | System BIOS Cacheable | [Enabled] | | | Video BIOS Cacheable | [Disabled] | | | Memory Hole At 15M-16M | [Enabled] | | | Delayed Transaction | [Enabled] | | | AGP Aperture Size (MB) | [64] | | | | | | | ** VGA Setting ** | | | | On-Chip VGA | [Enabled] | | | On-Chip Frame Buffer Size | [32MB] | | | Boot Display | [CRT+LFP] | | | PCI SERR# NMI | [Disabled] | | | ↑↓→←: Move Enter: Select | +/-/PU/PD:Value F10:S | Save ESC:Exit | | F1:General Help | | | | F5: Previous Values F6: | Fail-Safe Defaults F7 | :Optimized Defaults | #### **Chipset Features Setup Screen** This parameter allows you to configure the system based on the specific features of the installed chipset. The chipset manages bus speed and access to system memory resources, such as DRAM and the external cache. It also coordinates communications between conventional ISA bus and the PCI bus. It must be stated that these items should never need to be altered. The default settings have been chosen because they provide the best operating conditions for the system. The only time you might consider making any changes would be if you discovered that data was being lost while using your system. #### **DRAM TIMEING SELECTABLE:** The value in this field depends on performance parameters of the installed memory chips (DRAM). Do not change the value from the factory setting unless you install new memory that has a different performance rating than the original DRAMs. #### **CAS LATENCY TIME:** When synchronous DRAM is installed, the number of clock cycles of CAS latency depends on the DRAM timing. #### DRAM RAS# TO CAS# DELAY: This item let you insert a timing delay between the CAS and RAS strobe signals, used when DRAM is written to, read from, or refreshed. Fast gives faster performance; and Slow gives more stable performance. This field applies only when synchronous DRAM is installed in the system. The choices are 2 and 3. #### DRAM RAS# PRECHARGE TIME: If an insufficient number of cycles is allowed for the RAS to accumulate its charge before DRAM refresh, the refresh may be incomplete and the DRAM may fail to retain data. Fast gives faster performance; and Slow gives more stable performance. This field applies only when synchronous DRAM is installed in the system. The choices are 2 & 3. #### **SYSTEM BIOS CACHEABLE:** Selecting Enabled allows caching of the system BIOS ROM at F0000hFFFFFh, resulting in better system performance. However, if any program writes to this memory area, a system error may result. #### **VIDEO BIOS CACHEABLE:** Select Enabled allows caching of the video BIOS, resulting in better system performance. However, if any program writes to this memory area, a system error may result. #### **On-Chip VGA** To Enable/Disable the onboard display chip. #### **Boot Display** To select the boot-up display type. #### PCI SERR# NMI To Enable/Disable the PCI SERR# interrupt ## **5.6 INTEGRATED PERIPHERALS** Choose "INTEGRATED PERIPHERALS" from the main setup menu, a display will be shown on screen as below: Phoenix - AwardBIOS CMOS Setup Utility Integrated Peripherals | ▶ OnChip IDE Device▶ Onboard Device▶ SuperIO Device | [Press Enter] | Item Help Menu Level ▶ | |
---|--|------------------------|--| | Onboard Serial Port 3
Onboard Serial Port 4
WatchDog Support | [3E8/IRQ10]
[2E8/IRQ11]
[Disabled] | | | | ↑↓→←: Move Enter: Select +/-/PU/PD:Value F10:Save ESC:Exit F1:General Help F5: Previous Values F6: Fail-Safe Defaults F7:Optimized Defaults | | | | #### **Integrated Peripherals Setup Screen** By moving the cursor to the desired selection and by pressing the <F1> key, the all options for the desired selection will be displayed for choice. △ If bios setup menu item supports USB device boot, it will cause Win9x detects the same storages twice when the system is rebooted, and USB HDD will fail. Note: this cause just happen under Win9x, the phenomenon is a limitation. **VIA ONCHIP IDE DEVICE:** The options for these items are found in its sub menu. By pressing the <ENTER> key, you are prompt to enter the sub menu of the detailed options as shown below: Phoenix – Award CMOS Setup Utility OnChip IDE Device | OnChip Primary PCI IDE IDE Primary Master PIO | [Enabled]
[Auto] | Item Help | |---|---|--------------| | IDE Primary Slave PIO IDE Primary Master UDMA IDE Primary Slave UDMA OnChip Secondary PCI IDE IDE Secondary Master PIO IDE Secondary Slave PIO IDE Secondary Master UDMA IDE Secondary Slave UDMA | [Auto]
[Auto]
[Auto]
[Enabled]
[Auto]
[Auto]
[Auto]
[Auto] | Menu Level ► | | IDE HDD Block Mode | [Enabled] | | ↑↓→←:Move Enter: Select +/-/PU/PD:Value F10:Save ESC:Exit F1:General Help F5: Previous Values F6:Fail-Safe Defaults F7:Optimized Defaults Descriptions on each item above are as follows: - **1. OnChip Primary PCI IDE** The integrated peripheral controller contains an IDE interface with support for two IDE channels. Select Enabled to activate each channel separately. - 2. Primary Master/Slave PIO Secondary Master/Slave PIO The four IDE PIO fields allow you to set a PIO mode (0-4) for each of the four IDE devices that the onboard IDE interface supports. Modes 0 through 4 provide successively increased performance. In Auto mode, the system automatically determines the best mode for each device. - 3. Primary Master/Slave UDMA Secondary Master/Slave UDMA Ultra DMA/33 implementation is possible only if your IDE hard drive supports it and the operating environment includes a DMA driver (Windows 95 OSR2 or a third-party IDE bus master driver). If you hard drive and your system software both support Ultra DMA/33, select Auto to enable BIOS support. #### 4. IDE HDD Block Mode: Block mode is also called block transfer, multiple commands, or multiple sector read/write. If your IDE hard drive supports block mode (most new drives do), select Enabled for automatic detection of the optimal number of block read/writes per sector the drive can support. **ONBOARD DEVICE:** The options for these items are found in its sub menu. By pressing the <ENTER> key, you are prompt to enter the sub menu of the detailed options as shown below: Phoenix – Award CMOS Setup Utility Onboard Device | USB Controller | [Enabled] | Item Help | | |---|--------------------|-----------------|--| | USB 2.0 Controller | [Enabled] | | | | USB Keyboard Support | [Disabled] | Menu Level ► | | | USB Mouse Support | [Disabled] | | | | AC97 Audio | [Auto] | | | | PCI Option ROM Support | [Enabled] | | | | Init Display First | [Onboard/AGP] | | | | | | | | | ↑↓→←:Move Enter: Select | +/-/PU/PD:Value F1 | 0:Save ESC:Exit | | | F1:General Help F5: Previous Values F6:Fail-Safe Defaults | | | | | F7:Optimized Defaults | | | | Descriptions on each item above are as follows: 1. USB Controller This should be enabled if your system has a USB installed on the system board and you want to use it. Even when so equipped, if you add a higher performance controller, you will need to disable this feature. - **2. USB Keyboard Support** Select Enabled if your system contains a Universal Serial Bus (USB) controller and you have a USB keyboard. - **3. USB Mouse Support** Select Enabled if your system contains a Universal Serial Bus (USB) controller and you have a USB Mouse. #### 4. AC97 Audio: This item allows you to enable/disable to support AC97 Audio. #### 5. PCI Option ROM Support To Enabled/Disable the LAN PXE ROM #### **6.Init Display First** Select the initial Display type **SUPER IO DEVICE:** The options for these items are found in its sub menu. By pressing the <ENTER> key, you are prompt to enter the sub menu of the detailed options as shown below: Phoenix – Award CMOS Setup Utility SuperIO Device | Onboard FDC Controller | [Enabled] | Item Help | |---|--------------------------|-------------------| | Onboard Serial Port 1 | [3F8/IRQ4] | Menu Level ► | | Onboard Serial Port 2 Onboard Parallel Port | [2F8/IRQ3]
[378/IRQ7] | | | Parallel Port Mode | [SPP] | | | ECP Mode Use DMA | [3] | | | Zor mode des zim | [0] | | | ↑↓→←:Move Enter: Select | +/-/PU/PD:Value F1 | l D:Save ESC:Exit | | F1:General Help F5: Previous Values F6:Fail-Safe Defaults | | | | F7:Optimized Defaults | | | Descriptions on each item above are as follows: - 1. Onboard FDC Controller Select Enabled if the system has a floppy disk controller (FDC) installed on the system board and you wish to use it. If you install and-in FDC or the system has no floppy drive, select Disabled. - 2. Onboard Serial Port 1/2 Select an address and corresponding interrupt for the first and second serial ports. - Onboard Parallel Port This item allows you to determine access onboard parallel port controller with which I/O address. - **4. Parallel Port Mode** Select an operating mode for the onboard parallel (printer) port. Select *Normal, Compatible,* or *SPP* unless you are certain your hardware and software both support one of the other available modes. #### 5. ECP Mode Use DMA Select a DMA channel for the parallel port for use during ECP mode. **ONBOARD SERIAL PORT 3:** **ONBOARD SERIAL PORT 4:** Select a logical COM port name and matching address for the third and forth serial ports. Select an address and corresponding interrupt for third and forth serial port. ## 5.7 POWER MANAGEMENT SETUP Choose "POWER MANAGEMENT SETUP" option on the main menu, a display will be shown on screen as below: Phoenix - AwardBIOS CMOS Setup Utility Power Management Setup | | • | • | |--|--|--------------| | ACPI Function 4Power Management Video Off Method Video Off In Suspend MODEM Use IRQ Suspend Mode | [Enabled]
[User Define]
[DPMS]
[Yes]
[3]
[Disabled] | Item Help | | Soft-Off by PWR-BTTN PWRON After PWR-Fail Wake on LAN Power On by Ring Resume by Alarm x Date (of Month) Alarm x Time (hh:mm:ss) Alarm | [Instant-Off] [Off] [Enabled] [Disabled] [Disabled] 0 0:0:0 | Menu Level ▶ | | ** Reload Global Timer Events
FDD,COM,LPT Port
PCI PIRQ[A-D]# | | | | ↑↓→←: Move Enter: Select F1:General Help F5: Previous F7:Optimized Defaults | | | #### **Power Management Setup Screen** The "Power Management Setup" allows the user to configure the system to the most effectively save energy while operating in a manner consistent with your own style of computer use. #### **ACPI FUNCTION:** Users are allowed to enable or disable the Advanced Configuration and Power Management (ACPI). #### **POWER MANAGEMENT:** This item allows you to select the Power Management mode. #### **SOFT-OFF BY PWR-BTTN:** Pressing the power button for more than 4 seconds forces the system to enter the Soft-Off state when the system has "hung". The choices are Delay 4 Sec and Instant-Off. PWRON After PWR-Fail: This item allows you to select if you want to power on the system after power failure. The choice: Off, On, Former-Sts. #### **WAKE ON LAN:** An input signal from PME on the PCI card awakens the system from a soft off state. RESUME BY ALARM: When Enabled, your can set the date and time at which the RTC (real-time clock) alarm awakens the system from Suspend mode. ## 5.8 PNP/PCI CONFIGURATION Choose "PNP/PCI CONFIGURATION" from the main menu, a display will be shown on screen as below: Phoenix - AwardBIOS CMOS Setup Utility PnP/PCI Configurations | | • | | |---|--|--| | Reset Configuration Data | [Disabled] | Item Help | | Resources Controlled By x IRQ Resources PCI/VGA Palette Snoop | [Auto (ESCD)]
Press Enter
[Disabled] | Menu Level Select Yes if you are using a Plug and Play capable operating system Select No if you need the BIOS to configure non-boot devices | | ↑↓→←: Move Enter: Select +/-/PU/PD:Value F10:Save ESC:Exit F1:General Help F5: Previous Values F6: Fail-Safe Defaults F7:Optimized Defaults | | | #### **PNP/PCI Configuration Setup Screen** The PNP/PCI Configuration Setup describes how to configure PCI bus system. PCI, also known as Personal Computer Interconnect, is a system, which allows I/O devices to operate at speeds nearing the speed of the CPU itself uses when communicating with its own special components. This section covers technical items, which is strongly recommended for experienced users
only. **RESET CONFIGURATION DATA:** Normally, you leave this field Disabled. Select Enabled to reset Extended System Configuration Data (ESCD) when you exit Setup if you have installed a new add-on and the system configuration has caused such a serious conflict that the operating system cannot boot. **RESOURCE CONTROLLED BY:** The Award Plug and Play Bios can automatically configure all of the booth and Plug and Play-compatible devices. However, this capability means absolutely nothing unless you are using a Plug and Play operating system such as Windows 95. By choosing "manual", you are allowed to configure the *IRQ Resources and DMA Resources*. **IRQ RESOURCES:** The options for these items are found in its sub menu. By pressing the <ENTER> key, you are prompt to enter the sub menu of the detailed options as shown below: Phoenix – Award CMOS Setup Utility IRQ Resources | IRQ-3 assigned to | [PCI Device] | Item Help | | |---|--------------|----------------------------------|--| | IRQ-4 assigned to | [PCI Device] | | | | IRQ-5 assigned to | [PCI Device] | Menu Level ► | | | IRQ-7 assigned to | [PCI Device] | Legacy ISA for devices compliant | | | IRQ-9 assigned to | [PCI Device] | with the original PC AT bus | | | IRQ-10 assigned to | [PCI Device] | specification, PCI/ISA PnP for | | | IRQ-11 assigned to | [PCI Device] | devices compliant with the Plug | | | IRQ-12 assigned to | [PCI Device] | and Play standard whether | | | IRQ-14 assigned to | [PCI Device] | designed for PCI or ISA bus | | | IRQ-15 assigned to | [PCI Device] | architecture | | | | | | | | ↑↓→←:Move Enter: Select +/-/PU/PD:Value F10:Save ESC:Exit | | | | | F1:General Help F5: Previous Values F6:Fail-Safe Defaults | | | | Descriptions on each item above are as follows: F7:Optimized Defaults **IRQ-n Assigned to:** You may assign each system interrupt a type, depending on the type of device using the interrupt. ## **5.9 PC HEALTH STATUS** Choose "PC HEALTH STATUS" from the main menu, a display will be shown on screen as below: # Phoenix - AwardBIOS CMOS Setup Utility PC Health Status | Shutdown Temperature Current CPU Temperature +2.5V VCore VCC3 VBAT 5 V 12 V Fan1 Speed |
Item Help Menu Level ▶ | |--|-----------------------------| | ↑↓→←: Move Enter: Select
F1:General Help F5: Previo
F7:Optimized Defaults | | #### **PC Health Status Setup Screen** The PC Health Status Setup allows you to select whether to choose between monitoring or to ignore the hardware monitoring function of your system. **SHUTDOWN TEMPERATURE:** This item allows you to set up the CPU shutdown Temperature. This function is only effective under Windows 98 ACPI mode. #### **CURRENT CPU TEMPERATURE:** This item shows you the current CPU temperature. #### **CURRENT SYSTEM FAN SPEED:** This item shows you the current System FAN speed. #### +2.5/Vcore/Vcc3/VBAT/5V/12V Show you the voltage of +2.5/Vcore/Vcc3/VBAT/5V/12V # **5.10 FREQUENCY CONTROL** Choose "FREQUENCY CONTROL" from the main menu, a display will be shown on screen as below: Phoenix - AwardBIOS CMOS Setup Utility Frequency Control | Auto Detect PCI Clk
Spread Spectrum | [Enabled]
[Enabled] | Item Help | |--|------------------------|-----------------------| | | | Menu Level ► | | | | | | | | | | $\uparrow \downarrow \rightarrow \leftarrow$: Move Enter: S | Select +/-/PU/PD:Va | lue F10:Save ESC:Exit | | F1:General Help F5: F | Previous Values F | 6: Fail-Safe Defaults | | F7:Optimized Defaults | | | **Frequency Control Setup Screen** This setup menu allows you to specify your settings for frequency control. #### **AUTO DETECT PCI CLK:** This item allows you to enable or disable auto detect PCI Clock. **SPREAD SPECTRUM:** When the system clock generator pulses, the extreme values of the pulse generate excess EMI. Enabling pulse spectrum spread modulation changes the extreme values from spikes to flat curves, thus reducing EMI. This benefit may in some cases be outweighed by problems with timing-critical devices such as a clock-sensitive SCSI device. # 5.11. LOAD FAIL-SAFE DEFAULTS By pressing the <ENTER> key on this item, you get a confirmation dialog box with a message similar to the following: Load Fail-Safe Defaults (Y/N) ? N To use the BIOS default values, change the prompt to "Y" and press the <Enter > key. CMOS is loaded automatically when you power up the system. ## 5.12. LOAD OPTIMIZED DEFAULTS When you press <Enter> on this category, you get a confirmation dialog box with a message similar to the following: Load Optimized Defaults (Y/N) ? N Pressing "Y" loads the default values that are factory setting for optimal performance system operations. ## 5.13. PASSWORD SETTING User is allowed to set either supervisor or user password, or both of them. The difference is that the supervisor password can enter and change the options of the setup menus while the user password can enter only but do not have the authority to change the options of the setup menus. #### TO SET A PASSWORD When you select this function, the following message will appear at the center of the screen to assist you in creating a password. Enter Password: Type the password up to eight characters in length, and press < Enter >. The password typed now will clear any previously entered password from CMOS memory. You will be asked to confirm the password. Type the password again and press the < Enter > key. You may also press < Esc > to abort the selection and not enter a password. _ User should bear in mind that when a password is set, you will be asked to enter the password everything you enter CMOS setup Menu. #### TO DISABLE THE PASSWORD To disable the password, select this function (do not enter any key when you are prompt to enter a password), and press the <Enter> key and a message will appear at the center of the screen: PASSWORD DISABLED!!! Press any key to continue... Press the < Enter > key again and the password will be disabled. Once the password is disabled, you can enter Setup freely. ## **5.14 SAVE & EXIT SETUP** After you have completed adjusting all the settings as required, you must remember to save these setting into the CMOS RAM. To save the settings, select "SAVE & EXIT SETUP" and press <Enter>, a display will be shown as follows: ► Standard CMOS Features ► Frequency Control ► Advanced BIOS Features Load Fail-Safe Defaults ► Advanced Chipset Features Load Optimized Defaults ► Integrated Peripherals Set Supervisor Password ► Power Management word ► PnP/PCI Configura etup Save to CMOS and EXIT Y/N)? Y ▶PC Health Status Saving Esc: Quit $\uparrow \downarrow \rightarrow \leftarrow$: Select Item F10: Save & Exit Setup Save Data to CMOS Phoenix - AwardBIOS CMOS Setup Utility When you confirm that you wish to save the settings, your system will be automatically restarted and the changes you have made will be implemented. You may always call up the setup program at any time to adjust any of the individual items by pressing the key during boot up. ## **5.15 EXIT WITHOUT SAVING** If you wish to cancel any changes you have made, you may select the "EXIT WITHOUT SAVING" and the original setting stored in the CMOS will be retained. The screen will be shown as below: Phoenix - AwardBIOS CMOS Setup Utility # 6.1 Introduction to the TB-31 Touch Screen Controll Board ## CN5 (PH2.54mm FFC SMD Socket) | PIN | ASSIGNMENT | |-----|------------| | 1 | Right | | 2 | Left | | 3 | Bottom | | 4 | Тор | # CN1 (Hirose DF 14-20S) | PIN | ASSIGNMENT | |-----|------------| | 1 | GND | | 2 | GND | | 3 | 3.3V | | 4 | 3.3V | | 5 | GND | | 6 | GND | | 7 | RX0- | | 8 | RX0+ | | 9 | GND | | 10 | RX1- | | 11 | RX1+ | | 12 | GND | | 13 | RX2- | | 14 | RX2+ | | 15 | GND | | 16 | RXC- | | 17 | RXC+ | | 18 | GND | | 19 | GND | | 20 | GND | # **CN2 (Hirose DF 14-5S)** | PIN | ASSIGNMENT | |-----|------------| | 1 | 12V | | 2 | 12V | | 3 | ENBKL | | 4 | GND | | 5 | GND | # CN4 (Hirose DF 14-6S) | PIN | ASSIGNMENT | |-----|------------| | 1 | TXD | | 2 | RXD | | 3 | RTS | | 4 | GND | | 5 | DSR | | 6 | DTR | # CN3 (JAE IL-FPR-40S (Lower)) | PIN | ASSIGNMENT | |-----|------------| | 1 | 12-FPVEE | | 2 | 12-FPVEE | | 3 | 12-FPVEE | | 4 | 12-FPVEE | | 5 | 12-FPVEE | | 6 | GND | | 7 | GND | | 8 | GND | | 9 | GND | | 10 | GND | | 11 | N.C | | 12 | N.C. | | 13 | DE | | 14 | GND | | 15 | B5 | | 16 | B4 | | 17 | B3 | | 18 | B2 | | 19 | B1 | | 20 | В0 | | 21 | GND | | 22 | G5 | | 23 | G4 | | 24 | G3 | | 25 | G2 | | 26 | G1 | |----|-----| | 27 | G0 | | 28 | GND | | 29 | R5 | | 30 | R4 | | 31 | R3 | | 32 | R2 | | 33 | R1 | | 34 | R0 | | 35 | GND | | 36 | GND | | 37 | GND | | 38 | GND | | 39 | CLK | | 40 | GND | # 6.2 Configuring the PenMount Windows 2000/XP Driver Upon rebooting, the computer automatically finds new touch screen controller. The touch screen is connected but not calibrated. Follow the procedures below to carry out calibration. - 1. After installation, click the PenMount Monitor icon "PM" in the menu bar. - 2. When the PenMount Control Panel appears, click "Calibrate". ## **PenMount Control Panel** The functions of the PenMount Control Panel are Calibrate, Draw, Multiple Monitors, **Option**, and **About**, which are explained in the following sections. #### **Calibrate** This function offers two ways to calibrate your touch screen. "Standard Calibration" adjusts most touch screens. "Advanced Calibration" adjusts aging touch screens. Standard Calibration Click this button and arrows appear pointing to red squares. Use your finger or stylus to touch the red squares in sequence. After the fifth red point calibration is complete. To skip, press 'ESC'. Advanced Calibration Advanced Calibration uses 4, 9, 16 or 25 points to effectively calibrate touch panel linearity of aged touch screens. Click this button and touch the red squares in sequence with
a stylus. To skip, press 'ESC'. **NOTE:** The older the touch screen is, the more Advanced Mode calibration points you need for an accurate calibration. Use a stylus during Advanced Calibration for greater accuracy. #### Plot Calibration Data Check this function and a touch panel linearity comparison graph appears when you have finished Advanced Calibration. The blue lines show linearity before calibration and black lines show linearity after calibration. ## **Draw** Tests or demonstrates the PenMount touch screen operation. The display shows touch location. Click **Draw** to start. Touch the screen with your finger or a stylus and the drawing screen will register touch activity such as **left**, **right**, **up**, **down**, **pen up**, and **pen down**. Touch the screen with your finger or a stylus and the drawing screen will register touch activity such as **left**, **right**, **up**, **down**, **pen up**, and **pen down**. Click Clear Screen to clear the drawing. #### **About** This panel displays information about the PenMount controller and this driver version. #### **PenMount Monitor Menu Icon** The PenMount monitor icon (PM) appears in the menu bar of Windows 2000/XP system when you turn on the PenMount Monitor in the PenMount Utilities. The PenMount Monitor has the following functions: Beep Turns beep on or off. Right Button When you select this function, a mouse icon appears in the right-bottom of the screen. Click this icon to switch between Right and Left **Button functions.** Pen Stabilizer Check this function to reduce cursor vibration for relatively unstable touch screens, or where there may be excess vibration. Normally this function is not checked. Exit Exits the PenMount Monitor function. # 6.3 Uninstall the PenMount Windows 2000/XP Driver - 1. Exit the PenMount monitor (PM) in the menu bar. - 2. Go to **Settings**, then **Control Panel**, and then click **Add/Remove program**. Select **PenMount DMC9000** and click the **Add/Remove** button. 3. Select PenMount DMC9000 and DMC9100. Click the Remove button. 4. Select "Yes" and "Close" to remove the PenMount Windows 2000/XP driver, and reboot the system. ## 6.4 Software Functions #### Stream/Point Mode Stream and point modes control the touch and drag function of the touch screen. The point mode only allows "touch" interaction with the screen and does not allow the user to drag objects. The point mode is useful for maintaining the location of screen icons such on POS terminals. The stream mode allows a user to touch and drag icons and other items around on the screen, similar to using a mouse. ## **Drawing Mode** Drawing mode is a utility that lets the user draw on the screen using a finger or stylus. This allows the user to test the touch screen and touch controller to see if it is operational or is mapped correctly. The drawing mode can display either the matrix address of points touched or just show lines drawn. One of the PenMount driver's strengths is a special mathematical algorithm that minimizes the occurrence of noise and smooths the drawing of lines. ## **Beep Sound** All of PenMount's drivers support the beep sound function; however, some PC systems may only offer a fixed buzzer sound. # **Beep Sound Adjustable** Software drivers for Windows systems let the user adjust the frequency and length of the beep sound. The drivers let the user adjust the desired touch screen sound, as well as turn the sound off. # Wake Up Function The Wake Up function lets the user touch the screen and wake the system up from 'suspend' mode. ## **Point Calibration Data** The Plot Calibration Data function displays the touch screen linearity map, which is available if the PenMount driver provides an Advance Calibration function when touch screens age their touch linearity declines. This non-linearity is apparent when the touched point on the touch screen is not the same as the point on the display. The plot calibration data function shows the linearity status of the touch screen. This is only a support function for the user. The exact linearity of a touch screen requires a linearity test machine. ## **Right Button** The Right Button function simulates the right button function of a mouse. Click the right button and the user can only touch the screen once and the driver changes the touch definition to the left button. #### **Hide Cursor** The Hide Cursor function keeps the cursor arrow and other cursor symbols from appearing when using the touch screen. The cursor appears when the user turns this function off. #### **Cursor Offset** The Cursor Offset function lets the user adjust the position of the touch point to a desired location away from the real touch point. ## **Double-Click Area and Speed** The Double-Click Area and Speed function lets the user adjust the double-click area and speed to their personal preference. #### **About** This option shows the exact version of the drivers and controller firmware. Updated drivers are available for download on the PenMount website. # **Appendix: Mainboard Technical Summary** This section introduce you the maps concisely. Sections include: - Block Diagram - Interrupt Map - RTC (Standard) RAM Bank - Timer & DMA Channels Map - I / O & Memory Map #### **BLOCK DIAGRAM** ## **INTERRUPT MAP** | IRQ | ASSIGNMENT | |-----|-----------------------------| | 0 | System TIMER interrupt from | | | TIMER-0 | | 1 | Keyboard output buffer full | | 2 | Cascade for IRQ 8-15 | | 3 | Serial port 2 | | 4 | Serial port 1 | | 5 | Available | | 6 | Floppy Disk adapter | | 7 | Parallel port 1 | | 8 | RTC clock | | 9 | ACPI-Compliant System | | 10 | Serial port 3 | | 11 | Serial port 4 | | 12 | PS/2 Mouse | | 13 | Math coprocessor | | 14 | Hard Disk adapter | | 15 | Hard Disk adapter | # RTC (STANDARD) RAM BANK | CODE | ASSIGNMENT | |---------|-----------------------| | 00h | Seconds | | 01h | Second alarm | | 02h | Minutes | | 03h | Minutes alarm | | 04h | Hours | | 05h | Hours alarm | | 06h | Day of week | | 07h | Day of month | | 08h | Month | | 09h | Year | | 0Ah | Status register A | | 0Bh | Status register B | | 0Ch | Status register C | | 0Dh | Status register D | | 0Eh-7Fh | 114 Bytes of User RAM | ## **TIMER & DMA CHANNELS MAP** # Timer Channel Map : | Timer
Channel | Assignment | | |------------------|------------------------|--| | 0 | System timer interrupt | | | 1 | DRAM Refresh request | | | 2 | Speaker tone generator | | # **DMA Channel Map**: | DMA | Assignment | |---------|---------------------| | Channel | | | 0 | Available | | 1 | Available | | 2 | Floppy Disk adapter | | 3 | Available | | 4 | Cascade | | 5 | Available | | 6 | Available | | 7 | Available | ## I/O & MEMORY MAP # Fixed I/O Ranges Decoded by ICH2: | I/O Address | Read Target | Write Target | Internal Unit | |-------------|-----------------------|----------------------|------------------| | 00h-08h | DMA Controller | DMA Controller | DMA | | 09h-0Eh | Reserved | DMA Controller | DMA | | 0Fh | DMA Controller | DMA Controller | DMA | | 10h-18h | DMA Controller | DMA Controller | DMA | | 19h-1Eh | Reserved | DMA Controller | DMA | | 1Fh | DMA Controller | DMA Controller | DMA | | 20h-21h | Interrupt Controller | Interrupt Controller | Interrupt | | 24h-25h | Interrupt Controller | Interrupt Controller | Interrupt | | 28h-29h | Interrupt Controller | Interrupt Controller | Interrupt | | 2Ch-2Dh | Interrupt Controller | Interrupt Controller | Interrupt | | 2Eh-2Fh | LPC SIO | LPC SIO | Forwarder to LPC | | 30h-31h | Interrupt Controller | Interrupt Controller | Interrupt | | 34h-35h | Interrupt Controller | Interrupt Controller | Interrupt | | 38h-39h | Interrupt Controller | Interrupt Controller | Interrupt | | 3Ch-3Dh | Interrupt Controller | Interrupt Controller | Interrupt | | 40h-42h | Timer/Counter | Timer/Counter | PIT (8254) | | 43h | Reserved | Timer/Counter | PIT | | 4E-4F | LPC SIO | LPC SIO | Forwarder to LPC | | 50h-52h | Timer/Counter | Timer/Counter | PIT | | 53h | Reserved | Timer/Counter | PIT | | 60h | Microcontroller | Microcontroller | Forwarder to LPC | | 61h | NMI Controller | NMI Controller | Processor I/F | | 62h | Microcontroller | Microcontroller | Forwarder to LPC | | 63h | NMI Controller | NMI Controller | Processor I/F | | 64h | Microcontroller | Microcontroller | Forwarder to LPC | | 65h | NMI Controller | NMI Controller | Processor I/F | | 66h | Microcontroller | Microcontroller | Forwarder to LPC | | 67h | NMI Controller | NMI Controller | Processor I/F | | 70h | Reserved ⁵ | NMI & RTC controller | RTC | | 71h | RTC Controller | RTC Controller | RTC | | 72h | RTC Controller | NMI & RTC controller | RTC | | 73h | RTC Controller | RTC Controller | RTC | | 74h | RTC Controller | NMI & RTC controller | RTC | | 75h | RTC Controller | RTC Controller | RTC | | 76h | RTC Controller | NMI & RTC controller | RTC | | 77h | RTC Controller | RTC Controller | RTC | | I/O Address | Read Target | Write Target | Internal Unit | |-------------|-----------------------------|-----------------------------|---------------------| | 80h | DMA Controller | DMA controller & | DMA | | | | LPC/PCI | | | 81h-83h | DMA Controller | DMA Controller DMA | | | 84h-86h | DMA Controller | DMA Controller & | DMA | | | | LPC or PCI | | | 87h | DMA Controller | DMA Controller | DMA | | 88h | DMA Controller | DMA Controller & | DMA | | | | LPC or PCI | | | 89h-8Bh | DMA Controller | DMA Controller | DMA | | 8Ch-8Eh | DMA Controller | DMA Controller & | DMA | | | | LPC or PCI | | | 08Fh | DMA Controller | DMA Controller | DMA | | 90h-91h | DMA Controller | DMA Controller | DMA | | 92h | Reset Generator | Reset Generator | Processor I/F | | 93h-9Fh | DMA Controller | DMA Controller | DMA | | A0h-A1h | Interrupt Controller | Interrupt Controller | Interrupt | | A4h-A5h | Interrupt Controller | Interrupt Controller | Interrupt | | A8h-A9h | Interrupt Controller | Interrupt Controller | Interrupt | | ACh-ADh | Interrupt Controller | Interrupt Controller | Interrupt | | B0h-B1h
| Interrupt Controller | Interrupt Controller | Interrupt | | B2h-B3h | Power Management | Power Management | Power Management | | B4h-B5h | Interrupt Controller | Interrupt Controller | Interrupt | | B8h-B9h | Interrupt Controller | Interrupt Controller | Interrupt | | BCh-BDh | Interrupt Controller | Interrupt Controller | Interrupt | | C0h-D1h | DMA Controller | DMA Controller | DMA | | D2h-DDh | Reserved | DMA Controller | DMA | | DEh-DFh | DMA Controller | DMA Controller | DMA | | F0h | See Note 3 | FERR# /IGNNE#/ | Processor interface | | | | Interrupt Controller | | | 170h-177h | IDE Controller ¹ | IDE Controller ¹ | Forwarded to IDE | | 1F0h-1F7h | IDE Controller ² | IDE Controller ² | Forwarded to IDE | | 376h | IDE Controller ¹ | IDE Controller ¹ | Forwarded to IDE | | 3F6h | IDE Controller ² | IDE Controller ² | Forwarded to IDE | | 4D0h-4D1h | Interrupt Controller | Interrupt Controller | Interrupt | | CF9h | Reset Generator | Reset Generator | Processor interface | ### Notes: ^{1.} Only if IDE Standard I/O space is enabled for Primary Drive. Otherwise, the target is PCI. ^{2.} Only if IDE Standard I/O space is enabled for Secondary Drive. Otherwise, the target is PCI. 3. If POS_DEC_EN bit is enabled, reads from F0h will not be decoded by the ICH2. If POS_DEC_EN is not enabled, reads from F0h will forward to LPC. ## **Memory Decode Ranges From Processor Perspective:** | Memory Range | Target | Dependency/Comments | |-------------------------------|-------------|---| | 0000 0000h-000D FFFFh | Main | TOM registers in Host Controller | | 0010 0000-TOM (Top of Memory) | Memory | | | 000E 0000h-000F FFFFh | FWH | Bit 7 in FWH Decode Enable Register is set | | FEC0 0000h-FEC0 0100h | I/O APIC | | | | inside ICH2 | | | FFC0 0000h-FFC7 FFFFh | FWH | Bit 0 in FWH Decode Enable Register | | FF80 0000h-FF87 FFFFh | | | | FFC8 0000h-FFCF FFFFh | FWH | Bit 1 in FWH Decode Enable Register | | FF88 0000h-FF8F FFFFh | | | | FFD0 0000h-FFD7 FFFFh | FWH | Bit 2 in FWH Decode Enable Register is set | | FF90 0000h-FF97 FFFFh | | | | FFD8 0000h-FFDF FFFFh | FWH | Bit 3 in FWH Decode Enable Register is set | | FF98 0000h-FF9F FFFFh | | | | FFE0 0000h-FFE7 FFFFh | FWH | Bit 4 in FWH Decode Enable Register is set | | FFA0 0000h-FFA7 FFFFh | | | | FFE8 0000h-FFEF FFFFh | FWH | Bit 5 in FWH Decode Enable Register is set | | FFA8 0000h-FFAF FFFFh | | | | FFF0 0000h-FFF7 FFFFh | FWH | Bit 6 in FWH Decode Enable Register is set | | FFB0 0000h-FFB7 FFFFh | | | | FFF8 0000h-FFFF FFFFh | FWH | Always Enabled. | | FFB8 0000h-FFBF FFFFh | | The top two 64K blocks of this range can be | | | | swapped as described in Section 6.4.1. | | FF70 0000h-FF7F FFFFh | FWH | Bit 3 in FWH Decode Enable 2 Register is | | FF30 0000h-FF3F FFFFh | | set | | FF60 0000h-FF6F FFFFh | FWH | Bit 2 in FWH Decode Enable 2 Register is | | FF20 0000h-FF2F FFFFh | | set | | FF50 0000h-FF5F FFFFh | FWH | Bit 1 in FWH Decode Enable 2 Register is | | FF10 0000h-FF1F FFFFh | | set | | FF40 0000h-FF4F FFFFh | FWH | Bit 0 in FWH Decode Enable 2 Register is | | FF00 0000h-FF0F FFFFh | | set | | Anywhere in 4GB range | D110 LAN | Enable via BAR in Device 29:Function 0 | | | Controller | (D110 LAN Controller) | | All Other | PCI | None |